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Abstract
Background: Evoked potentials have been proposed to result from phase-locking of
electroencephalographic (EEG) activities within specific frequency bands. However, the respective
contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely
debated. We here applied the EEGlab procedure in order to quantify the contribution of
electroencephalographic oscillation in the generation of the frontal N30 component of the
somatosensory evoked potentials (SEP) triggered by median nerve electrical stimulation at the
wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in
relation to median nerve stimulation.

Results: The frontal N30 component was accompanied by a significant phase-locking of beta/
gamma oscillation (25–35 Hz) and to a lesser extent of 80 Hz oscillation.

After the selection in each subject of the trials for which the power spectrum amplitude remained
unchanged, we found pure phase-locking of beta/gamma oscillation (25–35 Hz) peaking about 30
ms after the stimulation. Transition across trials from uniform to normal phase distribution
revealed temporal phase reorganization of ongoing 30 Hz EEG oscillations in relation to
stimulation. In a proportion of trials, this phase-locking was accompanied by a spectral power
increase peaking in the 30 Hz frequency band. This corresponds to the complex situation of 'phase-
locking with enhancement' in which the distinction between the contribution of phasic neural event
versus EEG phase resetting is hazardous.

Conclusion: The identification of a pure phase-locking in a large proportion of the SEP trials
reinforces the contribution of the oscillatory model for the physiological correlates of the frontal
N30. This may imply that ongoing EEG rhythms, such as beta/gamma oscillation, are involved in
somatosensory information processing.
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Background
In the classical view (evoked or additive model), evoked
potentials reflect a sequential 'bottom-up' processing of
sensory stimulus inducing specific sequence of monopha-
sic 'evoked' potential peaks that are embedded in 'random
background' electroencephalogram (EEG). They are con-
sidered as distinctive components with fixed latency and
polarity, reflecting anatomically distinct generators whose
activity is independent from the spontaneous EEG, which
is considered as noise that must be ruled out by means of
averaging [1-3]. In this conceptual view, the EEG phase
distribution is unaffected by the stimulation and the
amplitude reduction of an evoked potential component is
interpreted independently of temporal reorganization of
the ongoing EEG.

An alternative view (oscillation model) suggested by pio-
neer experiments [4,5] pointed out the fact that evoked
potentials might result from phase-locking or phase-reset
of the basic EEG rhythms within specific frequency bands,
as a response to external stimulation [6]. Evidence of stim-
ulus-induced phase-locking has been reported by several
groups, using a variety of signal analysis methods [7-12].

In this context, the concept of synchronized resonances
has been introduced by Basar in 1980 [6]. In accordance
to the general theory of resonance phenomena it was pro-
posed that a sensory stimulation gives rise to 'evoked' or
'induced' EEG rhythms in several frequency bands. The
'evoked' rhythms are phase-locked to the stimulus and
can be observed in the averaged evoked potentials, while
the 'induced' rhythms are cancelled out during averaging
because of the jitter in the latency from one trial to the
next [13]. Contribution of the oscillatory model has been
demonstrated in the generation of visual and auditory
evoked potentials [4-7,11].

Here we tested whether this model can apply in somato-
sensory evoked potentials (SEP). We focused on the fron-
tal N30 component of SEP, as it is highly sensitive to
interference or gating from concomitant involvement of
the brain in sensory, motor and mental activities [14-19].
This wave is specifically modulated by electrical stimula-
tion of the internal part of the globus pallidus or the sub-
thalamus nuclei of Parkinsonian patients [20], suggesting
that it may represent a reliable physiological index of the
dopaminergic motor pathways [21]. Investigation of the
frontal N30 component has increasingly been used in a
host of clinical conditions [22-26]. However, the physio-
logical interpretation and the origin of the frontal N30 are
still debated [21,27,28].

The aim of this work was to study whether reorganization
of background EEG activity contributes to the generation
of the N30 component or whether this component essen-

tially results from the activity of a generator unrelated to
ongoing EEG rhythms, as posited in the additive model.
Confirmation of the latter hypothesis would imply that
future research should continue to concentrate on the
characterization of discrete local generators through
improved cancelling out of ongoing EEG rhythms. In this
view, inversion of the polarity of the N30 component, as
illustrated in patients with early acquired basal ganglia
lesions [25,26] might be interpreted as reflecting a sign
switch in cortical synaptic currents. In contrast, if oscilla-
tory phase-resetting contributes to the N30, future analy-
ses should specifically address the relationship between
stimulation and the dynamic organization of background
EEG, including phase-synchronization of ongoing
rhythms across various spatiotemporal scales. In the
above example, N30 polarity inversion would reflect
abnormal phase resetting of ongoing EEG rhythms rather
than synaptic changes. This might also provide new
insights into the mechanisms underlying the facilitation
of information transfer and in particular perceptual bind-
ing [29-31].

Making progress in the debate between the additive and
the oscillatory models [32-34] has become crucial because
evoked potentials are increasingly used in clinic as physi-
ological and neuropsychological index of brain areas or as
link with other functional approaches such as fMRI and
the underlying network dynamics. It must be borne in
mind, however, that the two models are not mutually
exclusive. For example, phase-locked components (transi-
tory or oscillatory) may be present in both the additive
and oscillatory models. Nevertheless, it was shown that
phase-locking and power enhancement of theta, alpha
and gamma rhythms may evolve independently in aging
and development [35-39], indicating the existence of dif-
ferent physiological mechanisms.

The approach of time-frequency analysis to single EEG tri-
als we used was developed by Makeig et al. (2002) [11].
This method allows to identify a superimposed neural
contribution in the latency range of the evoked response
by computing changes in the power spectrum in compar-
ison with the pre-event activity. Moreover, it allows to
detect phase reorganization of EEG rhythms. However, a
limitation of this approach was underlined in a recent
simulation study demonstrating that the addition of a
phasic signal on the ongoing EEG was able to induce a
phase resetting in some EEG frequency bands [40].
Indeed, there are two variants of the oscillation hypothe-
sis. The first and simple situation is the pure phase resetting
during which the occurrence of an event leads to resetting
the phase of ongoing EEG rhythms without any change in
the amplitude modulation of the EEG. This unequivocal
situation has been described for the N1 component of the
auditory [10,5] and visual evoked potentials [34,9]. The
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second, more complex situation is described as phase reset-
ting with enhancement during which the sensory stimula-
tion induces an increase in EEG amplitude in addition to
phase resetting [6]. In this case, it is not possible to distin-
guish the activity generated by phasic neural events (inde-
pendent of spontaneous EEG) from those linked to EEG
phase resetting [40]. This is the reason why we investi-
gated whether phase-locking and event-related power
spectral perturbation in specific EEG frequency bands
occur in the production of this component. We focused
our analysis on the presence or absence in the different tri-
als of a pure phase-resetting participating in the produc-
tion of the N30 SEP component, as pure phase-resetting
(i.e. without any power enhancement) would demon-
strate the contribution of the oscillatory model to N30
generation.

Results
Grand averaged analysis
Figure 1 shows grand average of the SEPs (Fig. 1C)
together with the corresponding ERSP (Fig. 1A) and ITC
(Fig. 1B) presentations (3000 trials, n = 7 subjects). The
major notable phenomena are the phase-locking and
amplitude (power) enhancement in the post-stimulus
period, corresponding to the expression of the N30 in the
averaged SEP (Fig. 1C). The phase-locking in the beta/
gamma band oscillation (mean frequency of 33.1 ± 1.3
Hz) peaked at a latency of 34.9 ± 5.2 ms and was quanti-
fied by an ITC value reaching 0.53 ± 0.17. At this latency,
the beta/gamma cluster presented an ITC value greater
than 0.3 extending from 20.4 ± 2.9 to 42.1 ± 4.4 Hz,
respectively. An ERSP cluster occurred at the same latency
than this ITC cluster (peaking at 35.2 ± 6.3 ms) reaching a
maximal value of 2.4 ± 1.5 dB. Smaller ITC values were
measured for faster and slower rhythms than 30 Hz.

For alpha rhythm (mean frequency of 13.2 ± 2.8 Hz), a
diffuse band of ITC value reaching the maximum (0.29 ±
0.10) at the latency of 54.8 ± 40.5 ms was present but no
significant ERSP value (maximal value of 0.83 ± 0.17 dB)
was found at this frequency (Fig. 2).

For faster gamma rhythm, a cluster with a diffuse shape
was obtained (mean ITC of 0.37 ± 0.16, dark yellow in
Fig. 1B). The maximal gamma ITC corresponded to a fre-
quency peak of 80.1 ± 23.0 Hz occurring at 23.8 ± 10.2
ms. The grand average ERSP map showed two distinct
clusters around 70 Hz and 110 Hz, respectively (yellow
clouds in Fig. 1A). However, in contrast to the 30 Hz ERSP
cluster, these higher frequency rhythms were differently
expressed by the subjects and mainly provided by two of
them.

Identification of pure phase-locking
Identification of phase resetting of spontaneous EEG
activities in certain frequency bands requires the demon-
stration of the presence of these EEG oscillations in the
absence of stimulus. We therefore measured the power
spectrum of the spontaneous 30 Hz oscillation in each
single trial excluding the periods of evoked activity. For all
the recorded trials, the mean of the 30 Hz power spectrum
represented a value of 17.1 ± 4.9 dB. This suggests that the
30 Hz oscillation, may be involved in a phase-locking
process. For indication, the 30 Hz power spectrum repre-
sented ~65% of the power spectrum of the dominant
alpha-mu rhythm (~10 Hz) measured during the same
period (26.4 ± 5.3 dB).

As it was demonstrated that in case of phase locking with
enhancement, which corresponds to the present situation,
it was impossible to distinguish the possible contribution
of EEG phase-resetting from phasic activity [40], we
focused our analysis on the trials of individual subjects in
which the power spectrum in the beta/gamma band
respected the criterion described in equation n°4 and thus
remained unchanged after stimulation.

For each of the 7 subjects, it was possible to identify a
large percentage of trials (62 ± 16%) for which the power

Grand average analysis of N30 componentFigure 1
Grand average analysis of N30 component. A and B 
Grand average of time/frequency template from ERSP and 
ITC analysis, respectively. C, concomitant grand averaging of 
the frontal N30 component recorded from F4 during median 
nerve stimulation at the wrist. Note that the peak of ERSP 
and ITC value in the beta range (25–35 Hz) coincided with 
the N30 latency peak. Colored areas show ERSP and ITC 
that are statistically significant (p < 0.001).
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spectrum remained unchanged within the whole fre-
quency range spanning 1 to 50 Hz. Figure 3 illustrates the
result of this selection in one subject. When all the trials
were taken into account a clear ERSP cluster appeared in
the beta/gamma band (Fig. 1A (grand average data) and
Fig. 3A (single subject data)). This power increase was
concomitantly accompanied by a significant ITC cluster
(Fig. 1B (grand average data) and Fig. 3B (single subject
data)). After the selection, although no more ERSP cluster
could be found (Fig. 3D), a significant ITC cluster in the
beta/gamma band was still present (Fig. 3E). The maximal
ITC value, duration, peak latency and frequency band of
the ITC cluster were not significantly changed by the trial
selection (Table 1). Conversely, the N30 amplitude was
significantly reduced by the selection (4.5 ± 1.7 µV versus
3.6 ± 1.2 µV, p < 0.02, Fig. 3C, F). In spite of this ampli-
tude reduction, the N30 component conserved its initial
morphology and peaked at the same latency (31.3 ± 0.9
ms versus 31.1 ± 0.9 ms). After the selection procedure the
relative percentage of the 30 Hz power remained the same
(66.6%).

Although we selected trials for which power variation was
statistically comparable to power distribution in the stim-
ulus-free period, we compared the results obtained for the
trials for which beta/gamma oscillation power was
between RMSfree and RMSfree-1SD (1st group) and the
one for which beta/gamma power was between RMSfree
and RMSfree+1SD (2nd group). No significant differences
between the two groups of trials in the ITC value (0.49 ±
0.13 versus 0.61 ± 0.13; p = 0.7) and N30 amplitude (3.1
± 0.9 µV versus 4.2 ± 1.6 µV; p = 0.6) were found. This
indicates that both significant phase-locking and N30
component were already present if only the trials present-
ing a power decrease were taken into account.

Selection of pure phase-locking illustrated for one subjectFigure 3
Selection of pure phase-locking illustrated for one 
subject. A,B and C, ERSP, ITC and N30 evoked potentials, 
respectively, recorded when all the trials were taken into 
account. Note that this situation corresponds to phase-lock-
ing with amplitude enhancement where the N30 component 
was accompanied by significant ERSP (A) and ITC (B) cluster 
in the beta frequency range. D, E and F ERSP, ITC and N30 
evoked potentials, respectively recorded when only the trials 
for which no amplitude enhancement were taken into 
account. This situation corresponds to pure phase-locking 
where the N30 component was only accompanied by the 
ITC cluster in the beta range. Note the reduction of the N30 
amplitude in the pure phase-locking situation (F). Colored 
areas show ERSP and ITC that are statistically significant (p < 
0.001).
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Phase-locking analysis
In order to demonstrate the temporal reorganization of
beta/gamma oscillations following the stimulation, the
instantaneous phase of each selected trial was calculated
for each subject. Figure 4 shows the spontaneous phases
of all selected trials of all the subjects (n = 1739) in a
cumulative histogram. Before the stimulus, the histogram
of phase distribution corresponds to uniform density
function (Fig. 4A). After the stimulus a phase alignment
occurred and the phase distribution became gradually
more peaked.

The peak of the distribution reached a phase value of 0
radian at the latency of the N30 component (Fig. 4H). The
comparison between the mean histogram calculated for
the -60 ms pre-stimulus time (Fig. 5A) and the 30 ms post-
stimulus time (Fig. 5B) showed a clear distinction
between uniform and peaked distribution at 0 radian. The
conservation of a same range of standard deviation
throughout the distribution provided evidence for the
reliability of the effect across subjects. Figure 6 illustrates
the Z score of the Kuiper's statistic κ. The difference in
phase distribution between the pre-stimulus reference
period ([-60 ms,-5 ms]) and the post-stimulus times was
significant (p < 0.05) below a Z score value of 0.68. This
level was reached for each analyzed time after the stimulus
and became highly significant around the N30 latency,
reaching a value of -1.44 ± 0.28.

Mean histogram of the spontaneous phase of beta oscillationFigure 5
Mean histogram of the spontaneous phase of beta 
oscillation. Mean and SD of phase histograms (same data as 
in Fig. 3, but calculated here on each individual subject). A, 
histogram before stimulus (at -60 ms). B, histogram after 
stimulus (at 30 ms).
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Discussion
We found that the frontal N30 component of the SEP was
characterized by a significant increase of the power spec-
trum of beta/gamma rhythm peaking around 30 Hz. This
event-related spectral perturbation was accompanied by
significant phase-locking of beta/gamma oscillation peak-
ing at the latency of the frontal N30 component. In terms
of the oscillation model of evoked potentials this situa-
tion corresponds to phase resetting with enhancement. In
this situation, it is difficult to distinguish between the con-
tribution of phasic neuronal activation versus phase reset-
ting of ongoing EEG oscillation [40]. However, we
demonstrated that for each subject a significant percent-

age of EEG trials show a beta/gamma phase-locking in the
absence of any increase of the EEG power at the latency of
the N30 component. This pure phase resetting indicates
that some of the frequency content of the ongoing EEG
(beta/gamma range) was phase-reset by the sensory stim-
ulation and contributed to the frontal N30 amplitude.

We have focused the present paper on this beta/gamma
oscillation because the ITC and ERSP values were maxi-
mal for this frequency band and that they coincide with
the N30 latency peak. However, the absence of alpha
power enhancement in the present data does not exclude
the influence of its partial phase-locking on the evoked
potentials amplitude.

It is generally admitted that phase-resetting implies 3
main requirements [41]: (1) oscillation at the dominant
frequency of the evoked response must be present in the
pre-stimulus period; (2) the transition between the pre- to
the post-stimulus periods must involve phase concentra-
tion; (3) this phase transition must occur without con-
comitant increase in power at the dominant frequency of
the ERP [40]. The present findings respected these 3 crite-
ria. With respect to the first criterion, power spectrum
analysis in the pre-stimulus period revealed that sponta-
neous beta/gamma oscillations are present and that they
might thus be involved in phase-locking process. This cri-
terion is reminiscent of the oscillatory susceptibility rule
of Basar (1992)[42].

In the same line of evidence, this necessary condition for
a plausible physiological contribution of beta/gamma
oscillation phase-locking to the N30 component is rein-
forced by previous demonstration of spontaneous cortical
activities in this frequency band in the sensori-motor
areas. In humans, beta rhythm has been recorded by intra
cerebral recordings in the pre- and post-central gyrus and

Table 1: Characterization of ITC clusters

Subject ITC max value ITC duration (ms) ITC max value latency (ms) ITC frequency band (Hz)

All trials trials with no 
ERSP change

All trials trials with no 
ERSP change

All trials trials with no 
ERSP change

All trials trials with no 
ERSP change

1 0.51 0.55 69.3 60.8 42.0 41.4 19 – 44 23 – 44
2 0.36 0.38 35.5 41.5 37.7 34.6 26 – 38 25 – 38
3 0.63 0.58 70.3 61.3 34.2 31.7 21 – 42 18 – 42
4 0.57 0.60 55.2 51.4 28.9 30.2 21 – 38 19 – 38
5 0.36 0.37 44.9 49.4 28.0 28.7 21 – 38 23 – 38
6 0.43 0.43 50.2 53.7 34.6 32.1 18 – 49 17 – 49
7 0.85 0.84 76.8 75.1 39.0 38.3 17 – 46 20 – 46

mean 0.53 0.54 57.4 56.1 34.9 33.8 20 – 42 21 – 42
SD 0.17 0.16 15.1 10.8 5.2 4.56 3 – 4 3 – 4

These ITC parameters were collected from EEGLab template. One-way ANOVA test shows that for each of the four presented 
parameters, the values measured for all the trials versus those measured for the trials with no ERSP change were not significantly different.

Statistical analysis of the beta phase distributionFigure 6
Statistical analysis of the beta phase distribution. Evo-
lution of the Z score (mean and SD) of the Kuiper's statistic κ. 
Z score is significant (p < 0.05) below a value of 0.68. Note 
that the highest significant values are reached around a post-
stimulus time of 30 ms.
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in the frontal medial cortex [43]. In monkeys, field-poten-
tial oscillations in the 20–30 Hz range have been reported
[44] and were supported by synchronous oscillatory activ-
ity in a large number of cortical neurons [45] providing
synchronisation of neuronal firing between somatosen-
sory and motor areas [46].

As time frequency measures have revealed the existence of
phase reset with power enhancement of beta/gamma
oscillation, we singled out the trials for which such
enhancement did not occur in order to analyze our find-
ings in the framework of the second criteria. These
selected trials represented about 62% of the original trials.
In this way, we also complied with the third criteria of a
strict absence of power enhancement in these selected tri-
als. We demonstrated that the stimulus induced a tempo-
ral reorganization of the spontaneous phase of the
ongoing beta/gamma oscillation in these trials. The
absence of a concomitant power increase in these trials
rules out the possibility that an evoked de novo beta/
gamma rhythm might explain the phase transition of the
ongoing beta/gamma oscillation. The presence of signifi-
cant ITC value and N30 amplitude when only the trials for
which the power of beta/gamma oscillation decreases
after the stimulation reinforces the contribution of ongo-
ing EEG phase modulation in the N30 generation. How-
ever, it is important to emphasize that the presence of this
pure phase locking does not exclude that evoked phasic
activity occurs when all the trials were taken into account.
Indeed, when the trials presenting power enhancement
were rejected, we found that the N30 amplitude was sig-
nificantly decreased. As ITC values remained the same,
this amplitude reduction indicates the contribution of
phasic activation to the N30 amplitude. This result was in
line with theoretical [47] and experimental [48] studies
demonstrating that phase and amplitude modulation
could participate together in evoked potentials genera-
tion.

It was previously shown that median nerve stimulation
was able to trigger an increase in the power of the 10 and
20 Hz oscillations [49], but only after a delay of 300 ms,
which is 10 times later than the occurrence of the present
30 Hz oscillation. The same type of stimulation evoked an
increase in the power of beta/gamma oscillation peaking
around 500 ms with a latency onset of 300 ms [50]. These
authors showed a decrease in beta oscillation during hand
manipulation whereas the amplitude of P140/N200 SEP
components was increased. However, the behaviour of
early SEP components was not the focus of these studies.

Event-related synchronisation of gamma rhythms (40–60
Hz) to hand movement onset and offset [43] may corre-
spond to the present clusters of gamma ITC recorded dur-
ing median nerve stimulation. Indeed, the present

paradigm produced small twitches of the thumb, induc-
ing an afferent sensory feedback. However, the peak
latency of the gamma phase-locking occurred too early
(~25 ms) to originate from thumb movement feedback.

Resonance in the basal ganglionic-thalamo-cortical loop
could be implicated in gamma oscillation triggered by
sensory stimulation. The pallidum and the subthalamic
nucleus form a functional network that resonates at 70 Hz
in the presence of a normal dopaminergic drive [51]. This
rhythm is replaced by slower oscillations in the off-state of
Parkinsonian patients [51], which could be related to the
N30 alteration in the Parkinsonian off-state [52,22].
Recently, it was suggested that the 30 Hz oscillation in the
subthalamic nucleus that is suppressed during finger
actual movement or mental imagery in Parkinsonian
patients could be physiological and present in normal
subjects [53].

The presence of a pure phase resetting in a large percentage
of the SEP trials is the key element of the present study. It
resembles the situation of the N1 components evoked by
visual [11,34] or auditory stimuli [12]. The transition of
the spontaneous phase from a pre-stimulus uniform dis-
tribution to a peaked form at 0 radian at the time of the
N30 component demonstrates the reorganization of the
ongoing beta/gamma rhythm. As proposed in the case of
many ERP components [6] in addition to this phase reset-
ting effect, the rest of the evoked component may be gen-
erated by coherent phasic activation of pyramidal neurons
via thalamo-cortical input, as predicted by the classical
view.

The present result could be integrated in the concept of
synchronized resonances [6]. As described for the audi-
tory 40 Hz oscillation [54], the N30 related beta/gamma
rhythm may be viewed as a more global mechanism work-
ing in parallel to the stimuli processing of the somatosen-
sory pathway. The phase-locking of this rhythm allows the
placement of the sensory signal in the temporal context
taking into account the intrinsic functional state of the
brain at the arrival time of the stimulus.

The fact that we found power increase in some trials and
not in others corroborates an integrative view that the
classical and the oscillation models are not necessarily in
opposition, but that their respective contribution must be
clarified before tempting physiological or clinical conclu-
sions.

As the activity recorded at one scalp channel sums activity
from several cortical source areas [11], the question of the
origin of the phase-locked and non-phase-locked activi-
ties cannot be fully addressed without using multiple
channels recording.
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Phase resetting of both local field potential and single-
unit activity representative of the ongoing motor cortical
beta (15–30 Hz) rhythms has been demonstrated in
pyramidal tract stimulation in monkeys [55]. This view is
also supported by in vitro and in vivo physiological stud-
ies [56] showing enhanced oscillation when neurons fire
in-phase with the oscillation field. This could explain at a
cellular level how the depolarisation induced by the sen-
sory stimulus is able to reset the oscillating phase and
bring the system into a synchronous attractor basin at the
latency of the N30 component.

Conclusion
The present study demonstrates that the frontal N30 com-
ponent of the SEP is characterized by an increase of the
power spectrum of beta/gamma rhythm peaking at 30 Hz
and by a concomitant increase of the phase-locking. The
fact that we found a pure phase-locking (without power
enhancement) in about two thirds of the trials accompa-
nied by a reorganization of the spontaneous phase of the
ongoing beta/gamma rhythm constitute evidence for the
contribution of the oscillation model to the production of
the frontal N30 component. The concomitant increase of
the beta/gamma power in about one third of the trials
indicating the contribution of phasic signal (additive
model) implies interaction between the physiological
mechanisms of stimulus phasic related component and
phase-resetting of ongoing spontaneous oscillations.

Methods
Subjects and conditions
The data were collected from 7 normal volunteers (3
females and 4 males, mean age: 25 ± 5.8 years). They were
in good health, free from neurological disease, and had
given informed consent to take part in the study, which
was approved by the local ethics committee. The SEPs
were recorded at rest with the eyes closed.

SEP stimulation and recording parameters
The stimuli were 0.2 ms square electrical pulses delivered
through a pair of Ag-AgCl electrodes cup to the left
median nerve at the wrist. The intensity was adjusted for
eliciting visible small thumb twitches. Random stimuli
intervals (0.5 – 2 s range) were used throughout the exper-
iment. The standard electrode positions corresponded to
F3, F4, a contralateral and an ipsilateral parietal site situ-
ated 70 mm from the midline and 30 mm behind C4-C3
(these loci correspond to the site where the N20 compo-
nent was maximally recorded when the contralateral wrist
was stimulated [1]; all electrodes were referred to the con-
tralateral earlobe. The on-line SEP averaging was per-
formed using a 4-channels- NihonKohden averager
(Neuropack, MEB-9100). The overall band-pass was 0.5
Hz-1.5 kHz and the analysis time was 100 ms with a sam-
pling rate of 5 kHz. Scalp electrodes impedances were kept

below 5 kΩ. Two series of 500 potentials were checked for
reproducibility. After ocular artefact reduction any
remaining artefact were rejected by visual inspection.

As the averager used does not permit the spectral analysis
of the single sweep data and in order to independently
analyze the ongoing rhythmic EEG activity from the
evoked response, the raw (unaveraged) EEG data were
transferred in parallel to a Pentium III personal computer
with analog-to-digital converter boards (Digidata Axo-
scope). This analysis was only performed on the F4 chan-
nel. Off-line analysis and illustrations were then
performed using the EEGLAB software [57].

Event-related spectral perturbation (ERSP)
The EEGLAB software permits to analyze the event-related
average dynamics changes in amplitude of the broad band
EEG frequency spectrum and to decipher the ongoing EEG
processes that may be partially time-and phase-locked to
experimental events [57]. The event-related spectral per-
turbation measure (ERSP) may correspond to a narrow-
band of event-related desynchronization (ERD) or syn-
chronization (ERS)). Briefly, for this calculation, EEGLAB
computes the power spectrum over a sliding latency win-
dow, on each epoch and normalizes each of them by its
respective mean baseline spectra and then performs aver-
aging across data trials. Each trial contains samples from -
400 ms before and 400 ms after the stimulus. The size of
the sliding window was of 512 data points. ERSP image
provides a colour code at each image pixel indicating the
reached power (in dB) at a given frequency f and latency t
relative to the stimulation onset. Typically, for n trials, if
Fk(f, t) is the spectral estimate of trial k at frequency f and
time t,

To compute Fk(f, t), EEGLAB uses the short-time Fourier
transform that provides a specified time and frequency
resolution.

Inter-trial coherence (ITC)
ITC is a frequency-domain measure of the partial or exact
synchronisation of activity at a particular latency and fre-
quency to a set of experimental events to which EEG data
trials are time locked. This measure corresponds to the
'phase locking factor' [58]. The term ITC refers here to its
interpretation as the event-related phase coherence
(ITPC), which is defined by:
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where || represents the complex norm. The ITC measure
takes values between 0 and 1. A value of 0 represents
absence of synchronisation between EEG data and the
time locking events; a value of 1 indicates their perfect
synchronisation.

The significance levels of the ITC and ERSP were fixed at
0.001 and assessed using surrogate data by randomly
shuffling the single-trial spectral estimates from different
latency windows during the baseline period (bootstrap
method).

Selection of trials with pure phase resetting
The objective of the single sweep selection was to conserve
only the trials for which the EEG amplitude of the filtered
signal (25–35 Hz) measured around the N30 latency
remained similar compared to the pre-stimulus ampli-
tude. For this, we compared in each filtered single-sweep
the root-mean-square (RMS) amplitude of the pre- and
post-stimulus periods ([-200, 0 ms] and [0, +60 ms],
respectively) according to the following equation:

where Max Ampl, the maximal amplitude of the filtered
single sweep signal is measured for the pre-stimulus
period ([-200, 0 ms]). Then, we selected only the trials for
which the following criterion was respected:

where ∆RMSdata was compared to ∆RMSstim-free for two peri-
ods free of stimulus ([-350, -150 ms] and [-150, -90 ms]).
After that, it was verified that the selected ∆RMSdata distri-
bution was comprised inside the ∆RMSstim-free distribution.
This means that no significant amplitude enhancement or
decrement were present in the selected trials.

Phase histogram analysis
The degree of synchronization of the ongoing EEG oscil-
lation was assessed by means of histograms of the instan-
taneous phase of the components across an ensemble of
the selected trials [12]. The phase histograms of the com-
ponents found in the beta/gamma (25–35 Hz) band in
the selected trials were generated every 5 ms, starting 60
ms before stimulus up to 80 ms after stimulus. The Kuiper
statistic κ coefficient was used to evaluate differences in
empirical distribution functions [59] and to quantify the
degree with which the phase histograms resembled a uni-
form density function. κ is defined as

with

where F0(xi) and SN(xi) are the mean pre-stimulus refer-
ence period [-60 ms, -5 ms] and the actually observed
cumulative distribution function, respectively; N is the
effective number of data points, L the number of bins in
the histrogram and xi the upper bound of bin i.

The more the observed SN(xi) is different from the refer-
ence F0(xi), the more κ will be negative. In order to pro-
vide more evidence to demonstrate the reliability of the
effect across subjects a Z-score of κ is given.

Data were analyzed using a one-way ANOVA test and
Bonferroni's post-hoc test after assessing their normality
by a Kolmogorov-Smirnov test (Statistica 7.1, Statsoft).
Differences were considered significant at P < 0.05.
Results are expressed as means ± SD.
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