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Abstract. Classical statistical techniques for prediction reach their limitations in applications

with nonlinearities in the data set; nevertheless, neural models can counteract these
limitations. In this paper, we present a recurrent neural model where we associate an
adaptative time constant to each neuron-like unit and a learning algorithm to train these
dynamic recurrent networks. We test the network by training it to predict the Mackey-Glass
chaotic signal. To evaluate the quality of the prediction, we computed the power spectra of
the two signals and computed the associated fractional error. Results show that the
introduction of adaptative time constants associated to each neuron of a recurrent network
improves the quality of the prediction and the dynamical features of a neural model. The
performance of such dynamic recurrent neural networks outperform time-delay neural

networks.

1. Intkrodixctio'n

In many areas of scientific research, the problem of
predicting the future of dynamical systems arises.
Unfortunately, when the observed dynamics are
nonlinear with a complex dependence on time, the
formulation of reliable predictions becomes
extremely difficult. The predictioti problem has been
studied as a problem of multidimensional function
approximation. This approach has produced new

methodologies. for .the analysis of nonlinear time

series, including local: predictive procedures (see
[1]). Neural network ~architectures ~have* drawn
considerable-atfention in recent years because of
their interesting learning abilities. Moreover, they
are capable of dealing with the problem of structural
instability. Several researchers have reported
exceptional results using neural networks [2, 3].

To tackle the problem of optimal prediction, the
class of feedforward neural networks defined in a
suitable probabilistic environment has often been
used. Following the development of recurrent neural
networks, these ones have been introduced in the
field of time series prediction. Recurrent neural

models present new features (not. found in
feedforward ones), such the learning of attractor
dynamics, the storage of information and above all,

their ability to deal with time-varying signals.

We introduce here a variation of the traditional
neural network model which presents two types of
adaptative parameters : the classical weights between
the units and the time constants associated with each
artificial neuron (these time constants represent the
membrane time constants of the biological neurons

[4]. g

In this paper, we investigate the impact of adaptative
time constants on the performance of recurrent
neural networks during chaotic signal prediction and
production. Signal prediction is the classical task
where the input to the network is the time-varying
signal and the desired output is a prediction of the

~signal at a fixed time increment in the future.

Nevertheless, once a neural network is trained, an

~ interesting application is to replace the external input

by the output of the device. The resulting dynamical
system should spontaneously generate its own
version of the signal.
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Fig. 1. Configuration of the network for : (a) prediction of the Mackey-Glass signal and (b) for production.

2.  Testsignal

The chaotic signal produced by integrating the
Mackey-Glass delay-differential equation [S, 6]:

de (1) x(t=7)

—=bx(t)+a i

dt © 1+[x(t—'c)]1o M
provides a useful benchmark for testing predictive
techniques [1, 7, 8]. For comparison with previous
results, we chose 1= 17, a=0.2, 5= 0.1, and trained
~ the network to predict six time units into the future.
We integrated (1) using a four-point Runge-Kutta
method with a step of 0.05. The initial conditions
were x(f)=0.8 for r<0, and the equation was
integrated up to = 1000 to allow transients to die
-out. The resulting signal is quasi-periodic with a
characteristic time of 7,=50, lying on a strange
attractor with a fractal dimension of approximately
2.1 [5] (see figure 2.). The signal has been divided
by two and shifted to fit in the interval corresponding
to the range of values of the output of the sigmoid
function.

The network was trained with 1000 points, sampled
on the Mackey-Glass signal with time increments of
0.5. It was next evaluated for the next 1000 points.

3. Network setup

We give below a list of the different parameters of
the network :

o  Network architecture. The network is recurrent
and consists of a series of fully-connected
neurons. Therefore each neuron in a N-neuron
network has N connections (including a self-
connection) : '
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Fig. 2. Mackey-Glass attractor.

Training time. With the term training time, we
mean the number of presentation of the entire
training set to the network (iterations), All the
simulations run on SUN 670MP; convergence is
reached within 5000 iterations typically.

algorithm.  We consider neural
networks govemed by the following equations

[9): :

@, o
ZT;:—yﬁF(&-)H,- )
where y; is the state or activation level of unit 1'f
F(c) is the squashing function F(e) = (1+e™*y
and x; is given by

X = QW 3)
:



Equation (2) is the propagation equation of the
network. The time constants 7; will act like a

" relaxation process. The correction of the time

constants will be included in the learning process
in order to increase the dynamics of the model.
The correction of the weights and the time
constants is done by the algorithm of
“backpropagation through time” . In order to
avoid - a misleading confusion, we have to
differentiate the algorithm of backpropagation
through time proposed by Rumelhart et al. [10]
and the algorithm, also named backpropagation
through time, presented in this paper. In the
algorithm of Rumelhart, the behaviour of a
recurrent network is achieved in a feedforward
netwqrk at cost of duplicating the structure many
tinfes” (the recurrent network is unfolded into a
multilayer feedforward network that grows by
one layer on each time step). Unfortunately, this
simple solution is suffering from its growing
memory requirement in considerably long
training sequences. We use an algorithm that
does not unfold the recurrent network ‘but
computes the learning equations using a forward
and a backward step through time (time appears
explicitly in the equations). Since we want our
network to -exhibit some particular temporal

. behaviour, the érror function will be a functional

defined as

' !
E= JLq(y(f),f)dt @

Ly

where £ and ¢ give the time interval during
which the correction process - occurs. The
function g(y(1),f) is the cost function at time ¢
which depends “on the vector of.the neuron

activations y and on time. We then introduce the

new variables p; (called the adjoint variables)
that will be determined by the system of
differential equations : - ~

ap;, 1 1 -
-—1=—pﬁ6,*2‘—W,-,-F'<xj)pj (5)

da T, , T

J

with boundary conditions pt))=0. After the
introduction of these new variables, we can
derive the learning equations :

; _
or 1 j F'(x ) p,d (6)
8wl-j- T I

E 1t @

O .

, =—Jp,-~’dr (7)
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It is important to notice that these equations can
be derived either using a finite difference
approximation, the calculus of variation, the
Lagrange multiplier, or even from the theory of
optimal control in dynamic programming using
the Pontryaguin Maximum Principle. A thorough
presentation of the leamning algorithm and a
comparison of some acceleration techniques can
be found in [11].

4. Configuration as an adaptative prediction
filter

The network consists of a N fully-connected neuron
system. One neuron gives the predicted value
6(t+ &) (where A is a fixed delay, and in our case,
equals 6); all the other neurons receive the input
signal o(¢). The process of learning adapts all the
network parameters forcing the prediction output to
produce a signal that approximates 6(¢ + A).

Since the objective of this work is to show the

performance of dynamic recurrent neural networks,
instead of showing a comparison between the real
Mackey-Glass signal and the predicted one, we will
rather present a scattergram depicting the desired
versus the predicted output. The ideal shape in
scattergram of figure 3 would be a straight line with
a slope 45°. The reason is cléar, if the desired output
is, let us say 0.45, the ideal predicted output would
be 0.45. We see, on figure 3, that our set of predicted
values (1000 points) clearly match the ideal straight
line (dashed line). '
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Fig. 3. Scattergrams of the actual predicted values

o(t+ 4) versus the desired predicted ourput ot + 4). The
ideal curve is a straight line with a slope of 45° (shown in
dashed line).
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5. Signal production results

As mentionned above, if we freeze the weights and
time constants of the network, remove the input
signal, and connect the output labeled 6(f + A) via a
delay A to the input node, we create a dynamical
systemn that spontaneously generates its own version
of the Mackey-Glass signal. In order to evaluate the
network performance, figure 4 shows a comparison
between the power spectrum of the signal generated
by the network and the spectrum of the Mackey-
Glass signal, integrated during a four-point Runge-
Kutta method. Figure 5 presents the fractional error
between ‘these spectra. This™ figure also shows the
fractional error of between the real spectrum and the
one produced by a network trained with continuous-
time temporal backpropagation with adaptable time
delays [12]. This network presents a structure of
feedforward network with two hidden layers of 10
neurons, one output and a total of 150 adaptable
connections. We clearly see that our dynamic
recurrent neural network outperforms the time-delay
neural model : the RMS value of the fractional error
falls from 0.252 to 0.064.

6.  Stability analysis
We conduct a stability analysis of our network

according to different parameters: the network
architecture, the gradient descent contro] terms.
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Fig. 4. Comparison between the spectrum of the Mackey-
Glass signal and the spectrum of the predicted signal
produced by the network. The spectra were computed
using Fast Fourier Transform (FFT).
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Fig. 5. Fractional error between the real’spectrum of the
Mackey-Glass signal and the spectrum generated by the
‘network. The fractional error is defined as the difference
between the two spectra, divided by the magnitude of the
Mackey-glass spectrum.  Solid line shows the Jractional
error for our dynamic recurrent neural network. The
dotted line is associated to the fractional error of a neural
network with adaptative time-delay connections.

We experimented different architectures of the
network, varying the number N of neurons. For all
these simulations, we conclude that 20 neurons is a
good compromise between speed of convergence
and quality of prediction.

Several accelerations techniques were evaluated,
such as a momentum term, learning rate adjustment
using line search. We found that the method
introduced by Silva and Almeida gives the best
results. Their method proposes to associate an
individual learning rate to each weight. These
learning rates are adapted by observing the signs of
the last two gradients [13]. I

7. Conclusion

Classical statistical techniques for prediction reach
their limitations in applications with nonlinearities in
the data set. It is" well known -that neural learning
procedures can significantly outperform current best
practice in typical prediction applications. The
performance presented in this paper shows that the
introduction of adaptative time constants associated
to each neuron of a recurrent network improve the
quality of -the prediction. Such dynamic recurrent
neural networks outperform time-delay neural
networks. Indeed, the action of time constants
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(obtained by a leaky integrator that ends each
neuron-like unit) is much more powerful than the
information storage of time-delay connections. Time
constants simultaneously improve the nonlinearity
effect of the sigmoid function and the memory effect
of time delays The weights and time constants of the
neural model are adapted by the “backpropagation
through time” algorithm that has been briefly
described in section 3. We tested ‘the model by
training it to predict the Mackey-Glass chaotic signal
at time ¢+ 6 using observations of time ¢ Our
simulations suggest that adaptative time constants
improve considerably the predictive performance.
Moreover, if the output of the network is connected
directly to its input, the associated predictor network
spontanedusly generates the training signal. The
spectrum of the synthesized signal appears to
approximate - the training signal spectrum. The
fractional errors between spectra of real and
. simulated signals show that dynamic recurrent
networks i more effective than feedforward
networks with adaptative time-delay connections.
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