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Connectionist models, also refered to as artificial neural networks, have focused

much attention for the last few years on the principle of paral lel  distr ibuted
processing in the brain. Nevertheless, the mean challenge of artificial neural net-

works simulat ion of real systems is to reach biological interpretabi l i ty. For this
purpose, the oculomotor system, particularly for its role in the horizontal vestibulo-

ocuiar reflex (VOR), offers a number of simplifying features that are reasonably
comprehensible.r In this system, the modifications to the vestibular signals by the
vestibular nuclei (VN) and other neurons before they are transmitted to the

motoncurons include a mathematical integration by thc f inal neural integrator (NI);

this one performs an essential function: the maintenance of position of both eyes in
space. I thas been local ized in the nucleus prepositus hypoglossi (NPH)-'?

Several models of the NI were proposed, but to gain new insight into the nature
of VN neurons, dynamic processing in the horizontal VOR was modeled using
recurrent neural networks.3-s The first neural network approach of the NI was
proposed by Cannon and Robinson.3'a Their hard-wired model can integrate a
push-pul l  input signal without integrating the background rates and has the appeal-
ing property that local ized lesions produced a decrease in the t ime constant of the
entire network (a clinically observed phenomenon); the synaptic weights were

explicitly specified. Later, Anastasio and Robinson proposed the first learning model
for the NI5; nevertheless, this model lacks constraints on the synaptic weights (after

training, it does not present the push-pull configuration that the real integrator has).
The purpose of the present investigation is not to develop a new model of the NI

but rather to improve the biologically plausible featurcs of the existing models. We

based our work on the learnine model of Anastasio-Robinson.s This modcl simulates
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the horizontal NI in the part icular case of the dynamic processing of the horizontal
VOR. It  presents two affcre nt inputs from the horizontal canals, a ful ly connectcd
hidden layer of 16 inhibitory units and two output units that rcprcscnl the motoncu-
rons of the median and lateral rectus muscles of the left  eye (see Ftc. 1). Thc
improvcmcnts that we bring to thc modcl include strong constraints on the synaptic
weights ( in order to rcspcct thc biological Dale's principlc) and thc introcluct ion o{
an art i f ic ial distance in our network (to define a notion of proximity). Becausc of
these modif icat ions (thc constraints on the weights introduces singular points during
training), a ncw lcarning process was nccdcd, and we chose a learning algori thm
based on a gcncral supervisor. This algori thm trains thc nctwork to leaki ly integrate
(in the sense of the Newtonian calculus) the push-pul l  eyc-vclocity signals providcd
by the semicircular canals without intcgrating thc background rate of 101) spikes/sec.

FIGURE l.  The modit ied art i f ic ial neural network for the modeling of the neural integrator.
The 16 interneurons of the hidden layer are divided into two groups of eight ancl are ful lv
connected with inhibitory connections (only the connections out of intcrneuron I arc depicted).
Each interneuron is connected to both motoneurons with a connection whose sign is given trn
the f igure. The eye posit ion is simply given by the dif ference between the motoneuron outputs.
The general supervisor computes al l  the weight updates.

Once our network has been trained. we wil l  be interested in the behavior of the
hidden units of our model: Could the distr ibution of thc art i f ic ial synaptic weights of
thesc units be rclatcd to a part icular organization depending on speci l ic rct luire-
ments? This task is not as simplc as i t  might bc; i t  is cven widcly assumed that thc
hidden units arc of l i t t le use in i l luminating the basic problem of how the brain
processcs signals. After training, we obscrved that the structurc of thc latcral
connection weights of the hidden layer exhibits scvcral clustcrs. The weights arc
obviously structured in conglomeratcs or groups of interneurons where the wcights
seem quitc important. Other zones are quite f lat and characterized by very low-value
weights (see Ftc. 2). The important thing is that the high-value wcights arc grouped
in what we cal l  clusters. A clustcr can be defined as a part icular group of adjoining
interneurons that have strong and privi leged connections with another ncighborhood
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of interneurons (the notion of neighborhood has a clcar meaning with rcspcct to the
introduction of a distance in the network).

From the biologicat poinl of vierv, microelectrode recordings have shown that
neighboring neurons often disclose similar patterns of electr ical act ivi ty corroborat-
ing the existence of a functional clustering of the NI. For examplc, the goldf ish NI
presents very clear nonovcrlapping compartmcnts with proper functions (cyc posi-
t ion or eye velocity intcgrators).6 Moreover, neurochemical ly defined clusters wcre

FIGURE2.  Sur facep lo tso f  theweigh tsd is t r ibu t ion .The l6  x  l6we igh tssur faceswere t rea tod
with cubic spl ine s to get a better visual izat ion. Values of the weights are plotted versus indexes I
and7. Even i f  the lateral layer has inhibitory conncctions (except for c), the weights irre plottcd
as posit ive values. (a and b) Two cluste red structures of the weights distr ibtrt ion of our network.
(c) The weight distr ibution of the Arnold-Robinson network trained with the general supcrvi-
sor without any constraints on the sign of the weights (the sign can be posit ive or negative). (d)
Thc weight distr ibution of the network where each interneuron has i ts own muscle.

found in thc NPH of the cat. Like othcr i tcrated patterns of the brain circuitry (thc
columns and blobs in visual cortex, thc barrels in the somatosensory cortex and thc
patches in the str iatum, thc clustcrs ref lcct one of thc organizing principles of neural
assemblies.T This typc of organization could thereforc bc considered to be expres-
sions of dif ferent kinds of biological constraints. These can bc genctic, bioche mical,
developmental (synaptic growth), and/or due to the information processing in thc
network. Art i f ic ial neural networks give us an opportunity to analyze this latter
hypothesis by means of â computational model using supervised lcarning to minric



DRAI'E e/ aJ.: NEURAL NETWORK SIMULA'IION 59'l

the behavior of the NI. The spontaneous emergence of clusters in art i f ic ial neural
networks, performing a well-defined physico-mathematical task (a tcmporal intcgrl-
t ion) is due to computational constraints, with a restr icted spacc for solut ions. Thus,
information-processing constraints are a plausible factor in inducing the enrergence
of i terated Datterns in biolosical neural networks.
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