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Connectionist models, also refered to as artificial neural networks, have focused
much attention for the last few years on the principle of parallel distributed
processing in the brain. Nevertheless, the mean challenge of artificial neural net-
works simulation of real systems is to reach biological interpretability. For this
purpose, the oculomotor system, particularly for its role in the horizontal vestibulo-
ocular reflex (VOR), offers a number of simplifying features that are reasonably
comprehensible.! In this system, the modifications to the vestibular signals by the
vestibular nuclei (VN) and other neurons before they are transmitted to the
motoncurons include a mathematical integration by the final neural integrator (NI);
this one performs an essential function: the maintenance of position of both eyes in
space. It has been localized in the nucleus prepositus hypoglossi (NPH).2

Several models of the NI were proposed, but to gain new insight into the nature
of VN neurons, dynamic processing in the horizontal VOR was modeled using
recurrent neural networks.> The first neural network approach of the NI was
proposed by Cannon and Robinson.** Their hard-wired model can integrate a
push-pult input signal without integrating the background rates and has the appeal-
ing property that localized lesions produced a decrease in the time constant of the
entire network (a clinically observed phenomenon); the synaptic weights were
explicitly specified. Later, Anastasio and Robinson proposed the first learning model
for the NI3; nevertheless, this model lacks constraints on the synaptic weights (after
training, it does not present the push—pull configuration that the real integrator has).

The purpose of the present investigation is not to develop a new model of the Ni
but rather to improve the biologically plausible features of the existing models. We
based our work on the learning model of Anastasio-Robinson.’ This model simulates

4 Address for correspondence: Jean-Philippe Draye, Faculté Polytechnique de Mons,
Laboratoire “Processus, Informatique, Parallélisme,” Rue de Houdain, 9, B-7000 Mons,
Belgium. E-mail: JPD@PIP.FPMS.AC.BE

Research assistant of the Belgian National Fund for Scientific Research.

594



DRAYE ef al.: NEURAL NETWORK SIMULATION 59§

the horizontal NI in the particular case of the dynamic processing of the horizontal
VOR. It presents two affcrent inputs from the horizontal canals, a fully connected
hidden layer of 16 inhibitory units and two output units that represent the motoncu-
rons of the median and lateral rectus muscles of the left eye (see F1G. 1). The
improvements that we bring to the model include strong constraints on the synaptic
weights (in order to respect the biological Dale’s principle) and the introduction of
an artificial distance in our network (to define a notion of proximity). Becausc of
these modifications (the constraints on the weights introduces singular points during
training), a new learning process was needed, and we chose a learning algorithm
based on a general supervisor. This algorithm trains the nctwork to leakily integrate
(in the sense of the Newtonian calculus) the push—pull eye-velocity signals provided
by the semicircular canals without integrating the background rate of 100 spikes/sec.
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FIGURE 1. The modified artificial neural network for the modeling of the neural integrator.
The 16 interneurons of the hidden fayer are divided into two groups of eight and are fully
connected with inhibitory connections (only the connections out of interneuron 1 are depicted).
Each interneuron is connected to both motoneurons with a connection whose sign is given on
the figure. The eye position is simply given by the difference between the motoneuron outputs.
The general supervisor computes all the weight updates.

Once our network has been trained, we will be interested in the behavior of the
hidden units of our model: Could the distribution of the artificial synaptic weights of
thesc units be related to a particular organization depending on specific require-
ments? This task is not as simple as it might be; it is cven widely assumed that the
hidden units are of little use in illuminating the basic problem of how the brain
processes signals. After training, we obscrved that the structurc of the lateral
connection weights of the hidden layer exhibits several clusters. The weights are
obviously structured in conglomerates or groups of interneurons where the weights
seem quitc important. Other zones are quite flat and characterized by very low-value
weights (see FiG. 2). The important thing is that the high-value weights arc grouped
in what we call clusters. A cluster can be defined as a particular group of adjoining
interneurons that have strong and privileged connections with another neighborhood
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of interneurons (the notion of neighborhood has a clear meaning with respect to the
introduction of a distance in the network).

From the biological point of view, microelectrode recordings have shown that
neighboring neurons often disclose similar patterns of electrical activity corroborat-
ing the existence of a functional clustering of the NI1. For example, the goldfish NI
presents very clear nonoverlapping compartments with proper functions (eye posi-
tion or eye velocity integrators).® Moreover, neurochemically defined clusters were
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FIGURE 2. Surface plots of the weights distribution. The 16 x 16 weights surfaces were treated
with cubic splines to get a better visualization. Values of the weights are plotted versus indexes i
and . Even if the lateral layer has inhibitory connections (except for ¢), the weights are plotted
as positive values. (a and b) Two clustered structures of the weights distribution of our network.
(¢) The weight distribution of the Arnold-Robinson network trained with the general supervi-
sor without any constraints on the sign of the weights (the sign can be positive or negative). (d)
The weight distribution of the network where each interneuron has its own muscle.

found in the NPH of the cat. Like other iterated patterns of the brain circuitry (the
columns and blobs in visual cortex, the barrels in the somatosensory cortex and the
patches in the striatum, the clusters reflect one of the organizing principles of neural
assemblies.” This type of organization could therefore be considered to be expres-
sions of different kinds of biological constraints. These can be genetic, biochemical,
developmental (synaptic growth), and/or due to the information processing in the
network. Artificial neural networks give us an opportunity to analyze this latter
hypothesis by means of a computational model using supervised learning to mimic
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the behavior of the NI. The spontaneous emergence of clusters in artificial neural
networks, performing a well-defined physico-mathematical task (a temporal integra-
tion) is due to computational constraints, with a restricted space for solutions. Thus,
information-processing constraints are a plausible factor in inducing the emergence
of iterated patterns in biological neural networks.
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