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Abstract—Current lower limb prostheses do not integrate re-
cent developments in robotics and in Brain-Computer Interfaces
(BCIs). In fact, active lower limb prostheses seldom consider
the user’s intent, they often determine the correct movement
from those of healthy parts of the body or from the residual
limb. Recently, an emerging idea for non-invasive BCIs was
proposed to allow such low bitrate systems to control a lowerlimb
prosthesis thanks to a Central Pattern Generator (CPG) widely
used in robotics. This CPG allows to automatically generatea
periodic gait pattern. Furthermore, the CPG pattern frequency
and magnitude can be adapted according to the specific gait
behavior of the patient and his desired speed.
This paper proves the concept of combining a human gait model
based on a CPG and a classic but non-natural P300 BCI in order
to consider the user’s intent. The details of how the entire chain
can be practically implemented are given. Finally, preliminary
results on four healthy subjects for a four-speed P300-based lower
limb orthosis with a non-control state are presented. Globally,
results are satisfying and prove the feasibility of such systems.

Index Terms—Brain-Computer Interfaces, Human Gait,
PCPG, Neuroprosthesis, Rehabilitation.

I. I NTRODUCTION

As recently pointed out by [1], although recent
developments have considerably enhanced the performance of
active lower limb orthoses/prostheses, they still suffer from
the non-consideration of a kind of direct user’s intent. Most
up-to-date non-invasive active prostheses detect gait phases
based on healthy leg or upper-body motion by means of
sensors to provide the adequate kinematics. An alternativeis
to use myoelectric signals recorded at the surface of the skin,
just above the muscles, to control the prosthesis.
Although promising, invasive prostheses are not considered
in this paper. In fact, complex nerve surgery techniques
now allow to connect an amputee to an artificial limb that
he can control intuitively with his own residual nerves and
muscles [2]. However, the recovery is still limited whereasa
risky surgery is required. Non-invasive neuroprostheses have
the main advantage not to require such heavy surgery and
would undoubtedly be more accepted by patients if similar
performances are provided.
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To consider the user’s intent, current non-invasive Brain-
Computer Interfaces (BCIs) based on ElectroEncephalography
(EEG) are good candidates. On the one hand, BCIs can be
evoked, i.e. generated unconsciously by the subject when
he perceives a specific external stimulus, such as the P300
and the Steady-State Evoked Potential (SSEP). The P300
evoked potential is a potential elicited 300 ms after a rare and
relevant stimulus, visual [3] or auditory [4], which appears,
for example, when the traffic lights are turning from the red
to the green. The SSEP is a periodic brain potential that
occurs when the subject is perceiving a periodic stimulus
such as a visual flickering picture (SSVEP) [5], a sound
modulated in amplitude (Auditory SSEP) [6], or vibrations
provided by a tactor (Somatosensory SSEP) [7].
On the other hand, BCIs can be spontaneous such as motor
and sensorimotor rhythms and slow cortical potentials. Those
µ (8-13 Hz) andβ (13-30 Hz) rhythm magnitudes are related
to motor actions, such as foot movements or motor imagery
and can be controlled voluntarily [8], or by performing
specific tasks [9]. Increase/Decrease of those magnitudes
are Event-Related Synchronization (ERS)/Event-Related
Desynchronization (ERD). Slow Cortical Potentials (SCP)
are slow modifications of cortical activity, which can last
from hundreds of milliseconds to several seconds [10]. By a
several-month training, the patient can voluntarily generate
either a positive, or a negative variation of this potential.

In this study, the P300 command system was considered.
Actually, some advantages of evoked potentials are crucial
to develop a non-invasive brain-controlled lower limb
prosthesis. Firstly, to our knowledge, no study has been
reported about ambulatory SCP- or motor/sensorimotor
rhythm-based BCIs. In fact, given that movements activate
those potentials, walking while performing such BCIs provoke
high interference. Moreover, those spontaneous BCIs are
often limited to three or four states (with lower performance
than P300 systems) whereas we intend to control gait speeds,
which could range from 0.5 km/h to 7 km/h. Finally, as far
as the P300 is an evoked potential, no learning step by the
user is required to manage the paradigm.
However, as reported in [11], a disadvantage of evoked
potentials is that they can only arise with the presence of
an external stimulus. Until now, given that most of the BCI
experiments were performed without any movement, using an
external screen was rationale. But, in ambulatory conditions,
another solution has to be considered. Hopefully, a specific



emerging and well-designed augmented reality eyewear
(Vuzix, Rochester, NY, USA) can circumvent this problem by
displaying stimuli on a semi-transparent module containing
all the key hardware elements.
Obviously, this P300 command is not natural but it is a
first step towards spontaneous non-invasive lower limb
prostheses. In fact, as discussed in [12], some ERD and ERS
are appearing periodically in the EEG as a function of the
gait cycle phase. However, although the authors claim those
elements are cortical activities, the conducted experiment
is subject to criticisms given the high subjectivity of the
used artifact removal technique. On the other hand, in [13],
even if some periodical ERD and ERS were found, they
do not strictly correspond to those of [12]. On top of that,
the artifact-free experiment, which was performed on a
chair, moving the feet in-phase or anti-phase on the ground,
does not really consider gait but only gait-like movements.
Finally, none of those experiments have studied the origins
of those periodic activations/deactivations: motor control or
sensorimotor feedback. Obviously, if the signal is mainly
produced by sensorimotor feedback, it will not be possible to
control a prosthesis with this information.

However, given that the bitrate obtained with current BCIs
is not sufficient to entirely control complex systems, shared
control has been intensively used as reviewed by [14]. This
means that the patient will send high-level commands and the
system will operate all the low-level problems corresponding
to these high-level commands. For instance, to control
a wheelchair [11], a P300 system detects the high-level
objective such as going to watch TV or to the bed room.
Then, the wheelchair is moving to this position considering
predefined paths and localization of the current position.
To implement shared control, researchers have developed
models of Central Pattern Generators (CPGs), which are
able to learn and generate periodic gait patterns. In human
locomotion, those CPGs are located in the spinal cord and are
controlled by the brain in terms of their produced frequencies.
This approach has inspired the field of robotics in the
development of autonomous robots from multi-legged insect-
like robots to humanoids [15] and active prostheses [16].

Considering results indicating that P300 BCI can be de-
veloped for ambulatory applications [4], [17] and that CPGs
can model gait quite well [1], this paper presents a proof
of concept of a five-state BCI-based foot lifter orthosis. It
describes how P300 can be used to control the CPG model
and the needed hardware devices. Furthermore, preliminary
results for four subjects are presented. The study focuses on
the control of a foot lifter orthosis useful for people affected
by strokes and who are unable to lift their feet. In Section 2,
the P300 pipeline is presented. In Section 3, the CPG model
based on a Programmable Central Pattern Generation (PCPG)
is exposed. In Section 4, the global strategy and the hardware
of the orthosis are detailed. In section 5, preliminary results
for four subjects are discussed.

II. P300 SYSTEM

This section first details the P300 paradigm. Then, the
acquisition system, the P300 approach and its pipeline are ex-
plained. Finally, the experiment and its purpose are presented.

A. P300 Paradigm

In the space of BCI paradigms, the P300 evoked
potential has been widely used to allow disabled people
to communicate. This involuntary positive potential arises
around 300 ms after the user has perceived a relevant and
rare stimulus [3]. Typically, it is generated by theodd-ball
paradigm, in which the user is requested to attend to a
random sequence composed of two kinds of stimuli with
one stimulus much less frequent than the other one. In case
the infrequent stimulus is relevant to the user and, assuming
that the subject was focusing on it by, for example, silently
counting it, its actual appearance activates a P300 waveform
in the users EEG, which is mainly located in the parietal areas.

The most common application is the P300 speller, which
consists in a text editor [18]. In this application, a 6 x 6
matrix, that includes all the alphabet letters as well as other
symbols, is presented to the user on a computer screen.
The detection of the target letter/symbol, i.e. a trial, is done
after a sequence of intensifications where each row/column
is randomly flashed. At the intersection of the detected
P300 responses, the computer is able to determine which
letter/symbol the subject was looking at.
Because the P300 has a low Signal-to-Noise Ratio mainly due
to other brain, muscular and ocular activities, this procedure
is repeated several times and the epochs corresponding to
each row/column are averaged before classification to obtain
better trial classification accuracy.

B. P300-based Command

EEG was recorded using a 32-electrode cap connected to
the ANT acquisition system (Advanced Neuro Technology,
ANT, Enschede, The Netherlands) digitizing the signals at
512 Hz. Left ear was chosen as reference. Mastoid was not
used because of possible pollution from EMG signals of the
neck while walking. Electrode impedance was measured and
maintained under 20 kΩ for each channel using electrode gel.

In this application, we are interested in a four-speed BCI
plus a non-control state, which does not send any instruction
to the orthosis control system. The screen was composed of
two rows and two columns representing Low-, Medium- and
High-speeds and the Stop states as depicted in Figure 1. The
different speeds could respectively correspond to 2, 4, 6 km/h
whereas the Stop state simulates the standing state. When the
user is not looking at the screen, a non-control state is detected
leading to no modification of the current speed.



Fig. 1: P300 visualization is divided into four states: Low-speed,
Medium-speed, High-speed and Stop. A fifth state is detectedby the
system when the user is not looking at the screen.

Providing the EEG signals downsampled at 32 Hz, the
pipeline is composed of several main components: a temporal
high-pass filter, an xDAWN-based spatial filter [19], an epoch
averaging and a LDA classifier using a voting rule for the
final decision sent to a VRPN server [20].
The frequency band of interest was obtained by high-pass
filtering the EEG signals at a 1 Hz cutoff frequency through a
4th order Butterworth filter. Thus, after the downsampling,the
undesired slow drift in the measurement and high-frequency
noise such as power line interference are removed [21].
Afterwards, a spatial filter is designed thanks to an xDawn
algorithm [19]. By linearly combining EEG channels, this
algorithm defines a P300 subspace. When projecting EEG
signals into this subspace, P300 detection is enhanced.
Then, the resulting signal is epoched using a time window
of 600 ms starting immediately after the stimulus. Groups
of two epochs corresponding to a specific row/column were
averaged. The flash, no flash and inter-repetition duration are
respectively 0.2 s, 0.1 s and 1 s.
Finally, a 12-fold Linear Discriminant Analysis classifier is
applied to each two-grouped averaged time windows giving
a value which represents the distance to an hyperplane
separating at best the target/non-target classes. For a given
trial, in a voting classifier, the row/column, which has been
activated is determined by summing six consecutive LDA
outputs (12 repetitions) and by choosing the maximum value.
The decision is sent to a VRPN server to be exploited outside
of Openvibe [20].

C. Experiment Description

In order to compare the impact on the results due to
gait, the experiment was divided into two sessions each
corresponding to a specific condition: sitting and walking at
3 km/h, which is a convenient speed for subjects. To train
classifiers and assess the entire system for each condition
separately, each session was composed of one training set
and one test set of 25 trials each (around 12 minutes each).

To allow the detection of the non-control state, two
additional databases were recorded. During these recordings,
the subject did not look at the screen. The first one with 10
trials combined with the training set aims at determining a

threshold (by a Receiver Operating Characteristic analysis
(ROC) [22]) from which the voting rule result is significant.
The second one with 25 trials allows to assess the non-control
state detection.
Because a practical application should not make mistakes
while the subject is not looking at the screen (non-control
state), the False Positive Rate (FPR), i.e. the number of
non-target elements classified as target ones divided by the
total number of non-target, should be as low as possible. In
the ROC analysis, the threshold was determined by FPR=1%.
Then, the system was assessed on the test set and on the
second non-control set.

Four male subjects participated in this experiment with
age between 24 and 33 years old (27.7±4.11). During the
experiment, a 20-inch screen in both conditions was placed
at about 1.5 meter in front of the subject. Subjects were
healthy and did not have any known locomotion-related or
P300 disturbing diseases or handicap. Moreover, for this proof
of concept, the orthosis was not attached to the subject but
the entire chain was successfully tested by playing offline the
experiment thanks to the Openvibe software.

III. M ODELING HUMAN GAIT BY PCPG

This section describes the PCPG algorithm equations and
principles. A previous study showing the possibility to model
human locomotion with this tool is referred.

A PCPG is a kind of Fourier series decomposition and is
composed of several adaptive oscillators. As defined in [23],
this algorithm is governed by the following equation system:
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As depicted in Figure 2, oscillators are coupled between each
other. The instantaneous phase of the fundamental oscillator
R0 is scaled at the frequencyωi throughRi and the phase
difference with the fundamental oscillator is given byφi. Each
oscillator i has an adaptive magnitude coefficientαi and a
frequency parameterωi. µ has a role of normalization of the
learned pattern throughri = (x2

i
+y2

i
)

1

2 . The other parameters
γ and ǫ aim at accelerating the convergence while limiting
stability problems [23]. TheQlearned(t) signal resulting from



the sum of oscillator outputs is compared to thePteach(t)
gait pattern target and the error valueF (t) is computed.
Throughout the learning step consisting in integrating the
differential equations by a 4th order Runge-Kutta method,
all the parameters of the PCPG are modified in order to
minimizeF (t). When this learning step is finished, the system
is generating the right pattern as depicted in Figure 3.

Fig. 2: The PCPG is able to learn the frequency components of a
periodic signal as well as the various phases and magnitudes. The
main interest of PCPGs is the possibility to modify a learnedpattern
in amplitude or frequency in a smooth way. This Figure is inspired
from [23].
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Fig. 3: The PCPG is able to learn quasi-perfectly an average
normalized pattern of foot relative angle by means of 5 oscillators
determined by the frequency complexity of the signal.

As studied in [1], a simple linear change of the~ω and ~α

vectors allows to model gait along a large range of speeds.
Indeed, people develop a specific strategy in order to minimize
the energy consumption during gait. By modifying the~ω and
~α vectors to mimic this strategy, the generated pattern should
provide more natural gait leading to a reduced patient fatigue.

IV. GLOBAL CONTROL STRATEGY AND ORTHOSIS

This section details the global strategy of the foot lifter
orthosis aiming at helping people with foot drop problems.
Then, it describes its hardware (further details about design
and future developments in [16]).

In case of foot drop problem, two specific control modes
of the orthosis are needed: active and passive. When the
foot is in the air (i.e. during the swing phase), the PCPG
algorithm provides the kinematics given the incapabilities
of the subject to lift his foot. Otherwise, during the stance

phase, the orthosis is completely driven by the patient and
the orthosis controller implements a mechanical impedance
control mimicking the effect of a spring in the orthosis joint.

As shown in Figure 4, the orthosis under development is
made of several components: two custom-fit plastic shells,
two commercial flexure joints, a linear actuator, a ball-link
transmission, a load cell to measure the actuator force, andtwo
force sensors installed in the orthosis sole, under the heeland
the toes [16]. The plastic shells were designed using a 3D scan
of the right foot and leg of a healthy subject, adding mounting
surfaces for the actuator, the flexure joints, and the mechanical
transmission. The actuator includes a position control unit that
can be driven by an external analog signal.
The passive and active control algorithms reside in a DsPIC
30F4013 microcontroller running at120 MHz. Both algo-
rithms are calculated at a sampling frequency of 500 Hz but
the actual output is chosen according to the orthosis mode.
The differential equations of the PCPG are solved by a simple
explicit Euler integration method.
Finally, the link between the VRPN client receiving commands
from the P300 system via the VRPN server included in Open-
vibe and the orthosis control is done by an SBC65EC. This is
an embedded (PIC based) Single Board Computer (SBC) with
10 Mbs Ethernet and RS232 interface. This allows to send a
byte of information coding the orthosis state through a TCP
protocol. In this paper, there are four orthosis states (4 speeds).
The SBC generates the sufficient number of interruptions in
the DsPIC to obtain the wanted state. The orthosis state is
updated the next time the foot is touching the ground. The
stop command activates the passive mode.
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Fig. 4: The most important components are the two force sensors
(not represented in the Figure) and the actuators.

V. RESULTS AND DISCUSSION

This section presents and analyses the results in sitting and
walking conditions. Then, a discussion about limitations of
this approach is proposed.



TABLE I: Results for four healthy subjects show that the system is working as designed. There are globally very few errors. When the
user is not looking at the screen, the system recognizes it quite perfectly. When the system gives a confidence value belowthe threshold, it
provides an idle state (depicted in parentheses) leading toquasi no error (remaining part of reported values). Furthermore, results in walking
and sitting conditions are similar in terms of errors but walking condition results have a higher non-decision rate.

Test set (sitting) Non-control set (sitting) Test set (walking) Non-control set (walking)

S1 100% (0%) 100% 100% (0%) 96%

S2 100% (0%) 100% 72% (28%) 100%

S3 72% (28%) 100% 68% (28%) 100%

S4 100% (0%) 100% 92% (8%) 100%

Mean±Std 93±14% (7±14%) 100±0% 83±15.45% (16±14.2%) 99±2%

Overall, as depicted in Table I, the system has the desired
behavior and, by choosing a very low FPR, it ensures that no
decision possibly harmful for the subject is taken. Regarding
the non-control state set, only one subject had an error. For
this subject, it means that, during a walk of about 12 minutes,
if the subject does not want to modify the current speed,
he has to re-adjust a misclassification of the system only
once, which is obviously not exhausting and conceivable for
practical applications.
Regarding the control set, quasi no error, i.e. a bad decision
when the subject wants to modify his current speed, occurs
at the price of non-decision in grey-areas. It means that when
the subject wants to modify the current speed, the system does
no error (except once for subject 3 in walking condition).
However, when the system is not certain of the subject’s
volition, it does not take a decision (grey-areas), which could
force the subject to concentrate again and in a better way to
achieve his goal.
Furthermore, results in walking and sitting conditions are
similar. In terms of errors, there is only one additional error for
one subject. However, the non-decision rate is much larger in
walking conditions. This means that the classification features
are less separated and thus, the uncertainty when a decision
has to be made is higher.

Although promising, this approach has some limitations.
Firstly, the decision time is quite slow for real-time applica-
tions. But, it can easily be improved by implementing better
and more complex pipelines, which often includes artifact
removal techniques as well as a better management of flash,
no-flash and inter-repetition duration, of the number of trials
and of the classifier choice. As reported in [11], a P300
system with a dozen of items can reach an accuracy of
95 % for a time of decision between 10-20 seconds in sitting
condition. Walking condition results can still be improvedby
applying artifact removal techniques specific to gait-related
artifacts [17], [24].
Secondly, the current implementation of the pipeline does not
allow to work in an asynchronous way, which is an important
feature for the patient’s comfort and safety and should be
investigated for future work [25], [26].
Finally, another limitation is the extension to an autonomous
orthosis. Actually, a screen is usable for rehabilitation purposes
on a treadmill but not for walking in a street. Therefore,

a kind of VUZIX augmented reality eyewear seems to be
indispensable. Obviously, the results of such P300 responses
have to be validated on this device to assess the decrease (or
increase) of performance.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, the proof of concept of a BCI-based lower
limb orthosis/prosthesis has been demonstrated on four healthy
subjects. The present system is composed of three major parts:
a P300 BCI sending high-level commands, a human gait
model based on a Programmable Central Pattern Generator
(PCPG) that could be designed for each subject and an orthosis
hardware and control system.
The four-state P300 is inspired from the classic synchronous
P300 speller plus a non-control state. This non-control state
was determined by a ROC curve analysis allowing to check if
the classifier outputs are sufficiently significant for a decision.
Results are encouraging although the decision time may be
too long for practical applications.
Finally, to help patients with foot drop problems, the control
strategy of the orthosis relies on two different modes depend-
ing on the gait phase. During the stance phase, when the
patient is totally able to control his foot, the orthosis control is
passive. On the other side, during the swing phase, when the
user is not able to lift his foot, the PCPG gait model, integrated
in the orthosis, provides the correct kinematics.

B. Future Work

From this proof of concept, short-term future work will
be devoted to study the controllability feedback from a large
population of patients and to adapt the available speeds in
the P300 interface according to this feedback. Regarding the
P300 system itself, some additional components for artifact
removal as well as the impact of using the Vuzix augmented
reality eyewear should be investigated. In order to enhance
the patient’s comfort and safety, asynchronous control should
also be considered.
Another important aspect will be to study other BCI
paradigms and to determine, thanks to patients’feedback,
which one is the most suitable for lower limb prosthesis
applications.



For middle-term future work, a much more natural
command generation system will be studied. Indeed,
recent studies showed that EEG signals could detect
specific periodical gait activations and deactivations in
Event-Related-Potential analyses and Event-Related-Spectral-
Perturbation [12], [13]. This would undoubtedly be a great
step if such a frequency information or, even more important,
a phase information could be extracted to directly command
the PCPG either in frequency, or in phase [16].

For long-term future work, two main achievements could
be realized. First, the frequency/phase information couldbe
derived from invasive technique to increase responsiveness and
Signal-to-Noise Ratio as already done for cats [15]. Regarding
the prosthesis, if the patient has still his limb, Functional
Electrical Stimulation can be used. As studied in [27], the
PCPG output could be shaped by specific neural network to
generate Electro-Myographic signals.
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[16] M. Duvinage, R. Jiménez-Fabián, T. Castermans, O. Verlinden, and
T. Dutoit, “An active foot lifter orthosis based on a pcpg algorithm,” in
12th International IEEE Conference on Rehabilitation Robotics, 2011,
pp. 116 – 122.

[17] J. T. Gwin, K. Gramann, S. Makeig, and D. P. Ferris, “Removal of
movement artifact from high-density EEG recorded during walking and
running,” J Neurophysiol, vol. 103, no. 6, pp. 3526–34, 2010.

[18] B. Z. Allison, E. W. W. Wolpaw, and J. R. Wolpaw, “Brain-computer
interface systems: progress and prospects.”Expert review of medical
devices, vol. 4, no. 4, pp. 463–474, Jul. 2007.

[19] B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, “xDAWN Algorithm
to Enhance Evoked Potentials: Application to Brain Computer Interface,”
Biomedical Engineering, IEEE Transactions on, vol. 56, no. 8, pp. 2035
–2043, 2009.

[20] Russell, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and A. T. Helser,
“VRPN: a device-independent, network-transparent VR peripheral sys-
tem,” in VRST ’01: Proceedings of the ACM symposium on Virtual reality
software and technology. New York, NY, USA: ACM, 2001, pp. 55–61.

[21] U. Hoffmann, J.-M. Vesin, T. Ebrahimi, and K. Diserens,“An Efficient
P300-based BrainComputer Interface for Disabled Subjects,” Journal of
neuroscience methods, vol. 167, no. 1, pp. 115–125, Jan. 2008.

[22] T. Fawcett, “An introduction to roc analysis,”Pattern Recogn. Lett.,
vol. 27, pp. 861–874, June 2006.

[23] L. Righetti, J. Buchli, and A. Ijspeert, “From dynamic hebbian learning
for oscillators to adaptive central pattern generators,” in Proceedings
of 3rd International Symposium on Adaptive Motion in Animals and
Machines – AMAM 2005. Verlag ISLE, Ilmenau, 2005, conference.

[24] T. Castermans, M. Duvinage, and T. Dutoit, “Optimizingthe per-
formances of a P300-based brain-computer interface in ambulatory
conditions [submitted],”IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 2011.

[25] H. Zhang, C. Guan, and C. Wang, “Asynchronous P300-Based Brain-
Computer Interfaces: A Computational Approach With Statistical Mod-
els,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 6, pp.
1754–1763, Jun. 2008.

[26] R. Panicker, S. Puthusserypady, and Y. Sun, “An asynchronous p300
bci with SSVEP-based control state detection,”IEEE Transactions on
Biomedical Engineering, vol. 58, no. 6, pp. 1781–1788, 2011.

[27] S. D. Prentice, A. E. Patla, and D. A. Stacey, “Simple artificial neural
network models can generate basic muscle activity patternsfor human
locomotion at different speeds,”Experimental Brain Research, vol. 123,
pp. 474–480, 1998.


