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Abstract—Current lower limb prostheses do not integrate re- To consider the user’s intent, current non-invasive Brain-
cent developments in robotics and in Brain-Computer Interiices  Computer Interfaces (BCls) based on ElectroEncephalbgrap
(BCls). In fact, active lower limb pr.ostheses seldom consgt (EEG) are good candidates. On the one hand, BCls can be
the user’s intent, they often determine the correct movemen evoked. ie. generated unconsciouslv by the subiect when
from those of healthy parts of the body or from the residual v 9 = . y by |
limb. Recently, an emerging idea for non-invasive BCls was he perceives a specific external stimulus, such as the P300
proposed to allow such low bitrate systems to control a lowelimb ~ and the Steady-State Evoked Potential (SSEP). The P300
prosthesis thanks to a Central Pattern Generator (CPG) widy  evoked potential is a potential elicited 300 ms after a rak a
usgd in robotlcs. This CPG allows to automatically generatea relevant stimulus, visual [3] or auditory [4], which appear
periodic gait pattern. Furthermore, the CPG pattern frequency for example, when the traffic lights are turning from the red
and magnitude can be adapted according to the specific gait ple, . 9 a= _g )
behavior of the patient and his desired speed. to the green. The SSEP is a periodic brain potential that
This paper proves the concept of combining a human gait model occurs when the subject is perceiving a periodic stimulus
based on a CPG and a classic but non-natural P300 BCl in order sych as a visual flickering picture (SSVEP) [5], a sound
to consider the user’s intent. The details of how the entire zain modulated in amplitude (Auditory SSEP) [6], or vibrations
can be practically implemented are given. Finally, prelimhary rovided by a tactor (Somatosensory SSEP) i7]
results on four healthy subjects for a four-speed P300-basdower P y y )
limb orthosis with a non-control state are presented. Globtly, ~On the other hand, BCIs can be spontaneous such as motor
results are satisfying and prove the feasibility of such syems.  and sensorimotor rhythms and slow cortical potentials.seho

Index Terms—Brain-Computer Interfaces, Human Gait, ,, (8-13 Hz) and3 (13-30 Hz) rhythm magnitudes are related
PCPG, Neuroprosthesis, Rehabilitation. to motor actions, such as foot movements or motor imagery

|. INTRODUCTION and can be controlled voluntarily [8], or by performlmg
) specific tasks [9]. Increase/Decrease of those magnitudes

As  recently pomted_ out by [1], although recent o Eyent.Related Synchronization (ERS)/Event-Related
de\{elopments_ have considerably enhanced the,performancﬁesynchronization (ERD). Slow Cortical Potentials (SCP)
active lower limb orthoses/prostheses, they still suffemf are slow modifications of cortical activity, which can last

the nodn—con3|de_rat|or_1 of a kind of d;:ect usder’s intent. Mog,m hundreds of milliseconds to several seconds [10]. By a
up-to-date non-invasive active prostheses detect gais@sageyeral-month training, the patient can voluntarily geter

based on healthy leg or upper-body motion by means ginqr 4 positive, or a negative variation of this potential
sensors to provide the adequate kinematics. An alterneive

to use myoelectric signals recorded at the surface of the ski In this study, the P300 command system was considered

just above the muscles, to control the prosthesis. _Actually, some advantages of evoked potentials are crucial
Although promising, invasive prostheses are not constlerg, yevelop a non-invasive brain-controlled lower limb

in this paper. In fact, complex nerve surgery techniques,qesis. Firstly, to our knowledge, no study has been

now allow to connect an amputee to an artificial limb th‘%ported about ambulatory SCP- or motor/sensorimotor

he can control intuitively with his own residual nerves anﬂwythm-based BCls. In fact, given that movements activate
muscles [2]- Howeve_r, the recovery IS still limited whereas those potentials, walking while performing such BCls pihk®o
risky surgery is required. Non-invasive neuroprosthese®@h o1, jnterference. Moreover, those spontaneous BCls are
the Ir:jwamdadvban':jallgeb not to require Sé‘cg' heavy su_rfge_ry Blten limited to three or four states (with lower performanc
WO‘: undoubtedly e_crjn(()jre accepted by patients It similgt,, p3o systems) whereas we intend to control gait speeds,
performances are provided. which could range from 0.5 km/h to 7 km/h. Finally, as far
as the P300 is an evoked potential, no learning step by the
M. Duvinage (FNRS Research Fellow), T. Castermans and ToiDate USer is required to manage the paradigm.
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emerging and well-designed augmented reality eyewear Il. P300 SYSTEM
(Vuzix, Rochester, NY, USA) can circumvent this problem by Thjs section first details the P300 paradigm. Then, the

displaying stimuli on a semi-transparent module cont@inicquisition system, the P300 approach and its pipelinexare e

all the key hardware elements. ~ plained. Finally, the experiment and its purpose are ptesen
Obviously, this P300 command is not natural but it is a

first step towards spontaneous non-invasive lower linfy P300 Paradigm
prostheses. In fact, as discussed in [12], some ERD and ER$n the space of BCl paradigms, the P300 evoked
are appearing periodically in the EEG as a function of thsotential has been widely used to allow disabled people
gait cycle phase. However, although the authors claim thoge communicate. This involuntary positive potential asise
elements are cortical activities, the conducted experimeiround 300 ms after the user has perceived a relevant and
is subject to criticisms given the high subjectivity of theare stimulus [3]. Typically, it is generated by thed-ball
used artifact removal technique. On the other hand, in [13aradigm, in which the user is requested to attend to a
even if some periodical ERD and ERS were found, thesndom sequence composed of two kinds of stimuli with
do not strictly correspond to those of [12]. On top of thabne stimulus much less frequent than the other one. In case
the artifact-free experiment, which was performed on the infrequent stimulus is relevant to the user and, assgimin
chair, moving the feet in-phase or anti-phase on the grounbat the subject was focusing on it by, for example, silently
does not really consider gait but only gait-like movementgounting it, its actual appearance activates a P300 wawefor
Finally, none of those experiments have studied the origiftsthe users EEG, which is mainly located in the parietal area
of those periodic activations/deactivations: motor cointir
sensorimotor feedback. Obviously, if the signal is mainly The most common application is the P300 speller, which
produced by sensorimotor feedback, it will not be possible tonsists in a text editor [18]. In this application, a 6 x 6
control a prosthesis with this information. matrix, that includes all the alphabet letters as well agoth
symbols, is presented to the user on a computer screen.
However, given that the bitrate obtained with current BClshe detection of the target letter/symbol, i.e. a trial, @he
is not sufficient to entirely control complex systems, shareafter a sequence of intensifications where each row/column
control has been intensively used as reviewed by [14]. This randomly flashed. At the intersection of the detected
means that the patient will send high-level commands and tR800 responses, the computer is able to determine which
system will operate all the low-level problems correspandi letter/symbol the subject was looking at.
to these high-level commands. For instance, to contrBecause the P300 has a low Signal-to-Noise Ratio mainly due
a wheelchair [11], a P300 system detects the high-lewel other brain, muscular and ocular activities, this praced
objective such as going to watch TV or to the bed roonis repeated several times and the epochs corresponding to
Then, the wheelchair is moving to this position consideringach row/column are averaged before classification to mbtai
predefined paths and localization of the current position.  better trial classification accuracy.
To implement shared control, researchers have developed
models of Central Pattern Generators (CPGs), which are
able to learn and generate periodic gait patterns. In hum3n P300-based Command
locomotion, those CPGs are located in the spinal cord and aréEEG was recorded using a 32-electrode cap connected to
controlled by the brain in terms of their produced frequesci the ANT acquisition system (Advanced Neuro Technology,
This approach has inspired the field of robotics in th8NT, Enschede, The Netherlands) digitizing the signals at
development of autonomous robots from multi-legged inseé12 Hz. Left ear was chosen as reference. Mastoid was not
like robots to humanoids [15] and active prostheses [16]. used because of possible pollution from EMG signals of the
neck while walking. Electrode impedance was measured and
Considering results indicating that P300 BCI can be d#aintained under 20¢k for each channel using electrode gel.
veloped for ambulatory applications [4], [17] and that CPGs
can model gait quite well [1], this paper presents a proof In this application, we are interested in a four-speed BCI
of concept of a five-state BCl-based foot lifter orthosis. plus a non-control state, which does not send any instmictio
describes how P300 can be used to control the CPG motielthe orthosis control system. The screen was composed of
and the needed hardware devices. Furthermore, preliminémp rows and two columns representing Low-, Medium- and
results for four subjects are presented. The study focuseshigh-speeds and the Stop states as depicted in Figure 1. The
the control of a foot lifter orthosis useful for people atied different speeds could respectively correspond to 2, 4, fikm
by strokes and who are unable to lift their feet. In Section 2/hereas the Stop state simulates the standing state. Waen th
the P300 pipeline is presented. In Section 3, the CPG modleker is not looking at the screen, a non-control state isctite
based on a Programmable Central Pattern Generation (PCie@yling to no modification of the current speed.
is exposed. In Section 4, the global strategy and the hasdwar
of the orthosis are detailed. In section 5, preliminary ltssu
for four subjects are discussed.



threshold (by a Receiver Operating Characteristic amalysi
(ROC) [22]) from which the voting rule result is significant.
The second one with 25 trials allows to assess the non-dontro
state detection.

Because a practical application should not make mistakes
while the subject is not looking at the screen (non-control
state), the False Positive Rate (FPR), i.e. the number of
non-target elements classified as target ones divided by the
Fig. 1: P300 visualization is divided into four states: Lepeed, total number Of-non_target' should be as lO\-N as possible. In
Medium-speed, High-speed and Stop. A fifth state is deteyeitie the ROC analysis, the threshold was determined by FPR=1%.
system when the user is not looking at the screen. Then, the system was assessed on the test set and on the
second non-control set.

Providing the EEG signals downsampled at 32 Hz, the Four male subjects participated in this experiment with
pipeline is composed of several main components: a tempode between 24 and 33 years old (274711). During the
high-pass filter, an xDAWN-based spatial filter [19], an dpocEXperiment, a 20-inch screen in both conditions was placed
averaging and a LDA classifier using a voting rule for that about 1.5 meter in front of the subject. Subjects were
final decision sent to a VRPN server [20]. healthy and did not have any known locomotion-related or
The frequency band of interest was obtained by high-pa3800 disturbing diseases or handicap. Moreover, for ttusfpr
filtering the EEG signals at a 1 Hz cutoff frequency through @ concept, the orthosis was not attached to the subject but
4th order Butterworth filter. Thus, after the downsamplifg, the entire chain was successfully tested by playing offliree t
undesired slow drift in the measurement and high-frequen@yperiment thanks to the Openvibe software.
noise such as power line interference are removed [21].
Afterwards, a spatial filter is designed thanks to an xDawn
algorithm [19]. By linearly combining EEG channels, this This section describes the PCPG algorithm equations and
algorithm defines a P300 subspace. When projecting EER@NCiples. A previous study showing the possibility to rebd
signals into this subspace, P300 detection is enhanced. human locomotion with this tool is referred.

Then, the resulting signal is epoched using a time window

of 600 ms starting immediately after the stimulus. Groups A PCPG is a kind of Fourier series decomposition and is
of two epochs corresponding to a specific row/column wef®@mposed of several adaptive oscillators. As defined in, [23]
averaged. The flash, no flash and inter-repetition duratien &his algorithm is governed by the following equation system
respectively 0.2 s, 0.1 sand 1 s.

IIl. M ODELING HUMAN GAIT BY PCPG

. 2 .
X ) e ) . i = —73)x; — wiy; + el(t) + R;i—9¢;) (1
Finally, a 12-fold Linear Discriminant Analysis classifier is x 7 TQ)x wis + eE(8) + 7sin( ¢:) (1)
applied to each two-grouped averaged time windows giving ¥ = v =i )‘yi T wii @)
a value which represents the distance to an hyperplane |w; = —eF(t)& 3)
separating at best the target/non-target classes. Forem giv S T 4
trial, in a voting classifier, the row/column, which has been | = 1if'(1) )
activated is determined by summing six consecutive LDA  |¢o =0 (5)
outputs (12 repetitions) and by choosing the maximum value. |4, — sin(R; — sgn(%)cos—l(_%) —$:),Vi#0 (6)

The decision is sent to a VRPN server to be exploited outside T
of Openvibe [20]. with o Y
R; = w—ésgn(zg)cos_l(—%) )
C. Experiment Description and
In order to compare the impact on the results due to N
gait, the experiment was divided into two sessions each F(t) = Preacn(t) —Z%‘xi (8)
1=0

corresponding to a specific condition: sitting and walkirig a
3 km/h, which is a convenient speed for subjects. To traiks depicted in Figure 2, oscillators are coupled betweeih eac
classifiers and assess the entire system for each conditmher. The instantaneous phase of the fundamental oscillat
separately, each session was composed of one training Bgtis scaled at the frequeney; through R; and the phase
and one test set of 25 trials each (around 12 minutes eachjifference with the fundamental oscillator is givendy Each
oscillator i has an adaptive magnitude coefficient and a
To allow the detection of the non-control state, twdrequency parametes;. p has a role of normalization of the
additional databases were recorded. During these regwdinearned pattern through = (zf+yf)%. The other parameters
the subject did not look at the screen. The first one with X0 and ¢ aim at accelerating the convergence while limiting
trials combined with the training set aims at determining stability problems [23]. Th&);carneq(t) Signal resulting from



the sum of oscillator outputs is compared to tRe...(t) phase, the orthosis is completely driven by the patient and
gait pattern target and the error valde(t) is computed. the orthosis controller implements a mechanical impedance
Throughout the learning step consisting in integrating trentrol mimicking the effect of a spring in the orthosis join
differential equations by a 4th order Runge-Kutta method,
all the parameters of the PCPG are modified in order toAs shown in Figure 4, the orthosis under development is
minimize F'(¢). When this learning step is finished, the systermade of several components: two custom-fit plastic shells,
is generating the right pattern as depicted in Figure 3. two commercial flexure joints, a linear actuator, a balklin
transmission, a load cell to measure the actuator forcetvemd
force sensors installed in the orthosis sole, under the drel
the toes [16]. The plastic shells were designed using a 3B sca
of the right foot and leg of a healthy subject, adding moumtin
[Qremeitty surfaces for the actuator, the flexure joints, and the mechkn
transmission. The actuator includes a position contrdl tinait
can be driven by an external analog signal.
The passive and active control algorithms reside in a DsPIC
30F4013 microcontroller running at20 MHz. Both algo-
rithms are calculated at a sampling frequency of 500 Hz but
Fio. 2: The PCPG is able to learn the freduency compbonents 0the actual output is chosen according to the orthosis mode.
pegriodic signal as well as the various phages ar)lld magnitl]'dus tl'ﬂe_d!fferentla_ll equatl_ons of the PCPG are solved by a simple
main interest of PCPGs is the possibility to modify a learpattern €Xplicit Euler integration method.
in amplitude or frequency in a smooth way. This Figure is irsp Finally, the link between the VRPN client receiving commsand
from [23]. from the P300 system via the VRPN server included in Open-
vibe and the orthosis control is done by an SBC65EC. This is
an embedded (PIC based) Single Board Computer (SBC) with
e - 10 Mbs_Etherne_t and R_8232 interfacg. This allows to send a
, byte of information coding the orthosis state through a TCP
] protocol. In this paper, there are four orthosis states ¢4ag).
The SBC generates the sufficient number of interruptions in
the DsPIC to obtain the wanted state. The orthosis state is
updated the next time the foot is touching the ground. The
stop command activates the passive mode.
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Fig. 3: The PCPG is able to learn quasi-perfectly an average
normalized pattern of foot relative angle by means of 5 oils
determined by the frequency complexity of the signal.
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As studied in [1], a simple linear change of tlieand &
vectors allows to model gait along a large range of speeds.
Indeed, people develop a specific strategy in order to ma@mi
the energy consumption during gait. By modifying tieand
@ vectors to mimic this strategy, the generated pattern shoul
provide more natural gait leading to a reduced patient diatig
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IV. GLOBAL CONTROL STRATEGY AND ORTHOSIS
This section details the global strategy of the foot lifter unk-saL{ TRANSMISSION
orthosis aiming at helping people with foot drop problemssig. 4: The most important components are the two force $snso

Then, it describes its hardware (further details aboutgiesi(not represented in the Figure) and the actuators.
and future developments in [16]).

In case of foot drop problem, two specific control modes V. RESULTS AND DISCUSSION
of the orthosis are needed: active and passive. When th&his section presents and analyses the results in sittidg an
foot is in the air (i.e. during the swing phase), the PCP®alking conditions. Then, a discussion about limitatioris o
algorithm provides the kinematics given the incapabsitiethis approach is proposed.
of the subject to lift his foot. Otherwise, during the stance



TABLE I: Results for four healthy subjects show that the egstis working as designed. There are globally very few errdrben the
user is not looking at the screen, the system recognizesté parfectly. When the system gives a confidence value b#tewthreshold, it
provides an idle state (depicted in parentheses) leadigdsi no error (remaining part of reported values). Furtiwee, results in walking
and sitting conditions are similar in terms of errors butkirgd condition results have a higher non-decision rate.

Test set (sitting) | Non-control set (sitting) Test set (walking) Non-control set (walking)
S1 100% (0%) 100% 100% (0%) 96%
S2 100% (0%) 100% 72% (28%) 100%
S3 72% (28%) 100% 68% (28%) 100%
S4 100% (0%) 100% 92% (8%) 100%
| MeantStd | 93+14% (7£14%) | 100+0% | 83+15.45% (16-14.2%) | 99+2% |

Overall, as depicted in Table I, the system has the desiradkind of VUZIX augmented reality eyewear seems to be
behavior and, by choosing a very low FPR, it ensures that malispensable. Obviously, the results of such P300 regsons
decision possibly harmful for the subject is taken. Regaydi have to be validated on this device to assess the decrease (or
the non-control state set, only one subject had an error. Focrease) of performance.
this subject, it means that, during a walk of about 12 minutes
if the subject does not want to modify the current speed, VI. CONCLUSION AND FUTURE WORK
he has to re-adjust a misclassification of the system ordy Conclusion

once, which is obviously not exhausting and conceivable forIn this paper, the proof of concept of a BCI-based lower

pracchI applications. . . ._limb orthosis/prosthesis has been demonstrated on folthiea
Regarding the control set, quasi no error, i.e. a bad decisio . : .
. e subjects. The present system is composed of three majar. part

when the subject wants to modify his current speed, occurs : . .
. o a~P300 BCI sending high-level commands, a human gait

at the price of non-decision in grey-areas. It means thanhwhe
model based on a Programmable Central Pattern Generator

no error (except once for subject 3 in walking condition%icpe) that could be designed for each subject and an asthosi

However, when the system is not certain of the Sub.ec,ardware and control system.
: Y ) e four-state P300 is inspired from the classic synchrenou

volition, it does not take a decision (grey-areas), whichlgo P300 speller plus a non-control state. This non-contrdesta

forge the .SUbJeCt to concentrate again and in a better wayv\t/gs determined by a ROC curve analysis allowing to check if
achieve his goal.

: . - - the classifier outputs are sufficiently significant for a dei.
Furthermore, results in walking and sitting conditions ar ) - .
. ] o esults are encouraging although the decision time may be
similar. In terms of errors, there is only one additionabefor

. - . too long for practical applications.
one subject. However, the non-decision rate is much Iarger#inall to helo patients with foot drob problems. the cohtr
walking conditions. This means that the classificationuess Y, pp . . PP '
are less separated and thus, the uncertainty when a deciatcg%tegy of the_orth03|s re“es on two different modes ddpen
has to be made is higher. ing on _the gait phase. During _the stance phas_e, wh_en the
patient is totally able to control his foot, the orthosis tohis

Although promising, this approach has some limitationpassive. On the other side, during the swing phase, when the
Firstly, the decision time is quite slow for real-time ajgph user is not able to lift his foot, the PCPG gait model, intégpla
tions. But, it can easily be improved by implementing bettén the orthosis, provides the correct kinematics.
and more complex pipelines, which often includes artifact
removal techniques as well as a better management of flah,Future Work
no-flash and inter-repetition duration, of the number ddléri  From this proof of concept, short-term future work will
and of the classifier choice. As reported in [11], a P30fe devoted to study the controllability feedback from a darg
system with a dozen of items can reach an accuracy mdpulation of patients and to adapt the available speeds in
95 % for a time of decision between 10-20 seconds in sittirige P300 interface according to this feedback. Regardiag th
condition. Walking condition results can still be improvieg P300 system itself, some additional components for attifac
applying artifact removal techniques specific to gaittedda removal as well as the impact of using the Vuzix augmented
artifacts [17], [24]. reality eyewear should be investigated. In order to enhance
Secondly, the current implementation of the pipeline dass rthe patient’s comfort and safety, asynchronous controlisho
allow to work in an asynchronous way, which is an importaraiso be considered.
feature for the patient's comfort and safety and should Beother important aspect will be to study other BCI
investigated for future work [25], [26]. paradigms and to determine, thanks to patients’feedback,
Finally, another limitation is the extension to an autonosio which one is the most suitable for lower limb prosthesis
orthosis. Actually, a screen is usable for rehabilitationgoses applications.
on a treadmill but not for walking in a street. Therefore,



For middle-term future work, a much more natural[9]
command generation system will be studied. Indeed,
recent studies showed that EEG signals could deteg
specific periodical gait activations and deactivations in
Event-Related-Potential analyses and Event-Relatedt@pbe
Perturbation [12], [13]. This would undoubtedly be a greyfl]
step if such a frequency information or, even more important
a phase information could be extracted to directly commar[11dz]
the PCPG either in frequency, or in phase [16].

For long-term future work, two main achievements coult!
be realized. First, the frequency/phase information cdgd
derived from invasive technique to increase responsiveaes
Signal-to-Noise Ratio as already done for cats [15]. Reggrd [14]
the prosthesis, if the patient has still his limb, Functiona
Electrical Stimulation can be used. As studied in [27], the
PCPG output could be shaped by specific neural network[icg

generate Electro-Myographic signals. ]
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